AALBORG UNIVERSITY

INSTITUTE FOR ELECTRONIC SYSTEMS
DEPARTMENT OF MEDICAL INFORMATICS AND IMAGE

ANALYSIS
Frederik Bajersvej 7 = DK-9220 AALBORG @ Phone 96 35 80 80
TITLE: Constructing an Information System for
Advice on Antibiotic Therapy
THEME: Final Thesis

PROJECT PERIOD: 10th semester, Febuary 2001 to June 2001

ProJECT GrROUP: 1023

PARTICIPANTS:
Jonathan Eyal Gardi
Anders Mgller Nielsen

SUPERVISORS:
Steen Andreassen

PUBLICATIONS: 9
NUMBER OF PAGES: 159

Abstract

This report documents the development of a framework for med-
ical information systems. The framework consists of connectiv-
ity between the users, the clinical database and the decision
support system. This framework is designed to be independent
of the information type and the decision support system used.
The framework has been implemented in Java using
client/server-architecture. The proposed framework consists
of four components: a database, a decision support system,
a client component handling interaction with the system, and a
component handling the exchange of information between the
clients, the database and the decision support system. The
method of communication between those three components is
based CORBA and XML, thus providing portability and con-
text free framework.

Applying it to the TREAT project will validate the functional-
ity and usability of the framework. The goal of TREAT project
is to build a distributed web-based medical information system
integrated with a decision support system designed for provid-
ing advice on antibiotic therapy.

FINISHED: 7th of June 2000

This report must not be published or reproduced without permission from the project group.
Copyright © 2001, project group 1023, Aalborg University

Foreword

This project is made by the 10th semester group 1023 in the spring of the year 2001 at Aalborg
University, Department of Medical Informatics and Image Analysis.

Throughout the report, citations will be in the Harvard bibliographic style, if there are more
than two authors, all authors are listed in the first citation and in subsequent citations just the
first authors name followed by et al. A citation to page 120 in Physiology by Robert M. Berne
et al will look like (Berne, Genuth, Koeppen, Kutchai, Levy, Murphy, Ratnoff, Stanton, Staub
& Willis 1992, p. 120) and subsequent citations will look like (Berne et al. 1992, p. 120).

Figures and tables will be numbered in succession within each chapter and references will be
made in the form of number.

We would like to thank everybody who has contributed to this project, especially the 5th
semester group and 7th semester group who previously worked on the TREAT project.

Jonathan Eyal Gardi Anders Mgller Nielsen

iii

Contents

-

Introduction & Analysis

Introduction

1.1 Motivation e e e e e e e e e e e
1.2 Focus of Project L
TREAT

2.1 Overview e e e e e e
2.2 Technical Platforms e e e
Previous Work

3.1 Group 555 L e e
3.2 Group 726o e e
3.3 Judex . . .o e e e
3.4 Conclusion. e e e

Problem Analysis

4.1 Problem Domain e e e e

TREAT Analysis

5.1 TREAT LAB Versus TREAT WARD
5.2 TREAT Elementary Operations
System Requirements

6.1 Simultaneous Access
6.2 System Architecture L
6.3 System Components and Open Interfaces
6.4 DSS Module Usage« o i e
6.5 Security o .
6.6 Backup e
6.7 Representation of Information
6.8 Context-Free Core System

11
11
13
15
17

19
19

28
28
33

vi

CONTENTS

IT Design

7 Components Identification
7.1 General System Overview
7.2 Internal Components
7.3 External Components

8 Limitations
8.1 Non Implemented Components
8.2 Fully Implemented Components
8.3 Proof of Concept Components

9 Applied Technologies
9.1 Java,

9.2 JDBC

9.3 CORBA
94 XML

9.5 HTML

9.6 HTTPS
9.7 SQL Server 2000

9.8 Web Server IIS 5.0
9.9 Active Server Pages
9.10 MD5 Algorithm

10 General Design
10.1 Context Free Information
10.2 Encoding Tables
10.3 Interaction Between Components
10.4 Consistency
10.5 Security

10.6 Backup

10.7 Statistical Analysis

10.8 Signing

11 Components Design
11.1 DBMS Server
11.2 DBMS Client
11.3 Web Gateway
11.4 Web Server
11.5 DSS Server
11.6 Search Server
11.7 Search Client

43

CONTENTS vii
11.8 Utils o e e e 115
11.9 Integration of External Components 117

IIT Implementation 121

12 Implementation 123
12.1 Applied Software L. 123
12.2 External Jar Files. L L L 124
12.3 External Code- MD5 124
12.4 Directory Structure L 124
12.5 Installation Guidelines Lo L 125
12.6 Debugging L e e e e 130
12.7 Problems Encountered L Lo 132

IV Test & Conclusion 135

13 System Test 137
13.1 Accept Test o L . L e 137
13.2 Conformance Test e 141

14 Conclusion 145

V Appendix 147

A Screen Dumps 149

B IDL File 153
Bibliography 157

List of Figures

1.1

2.1

3.1
3.2
3.3

4.1
4.2

5.1
5.2
5.3
5.4
5.5

7.1

9.1
9.2
9.3
94
9.5
9.6

10.1
10.2
10.3

11.1
11.2
11.3
11.4
11.5

Focus of this project. L
System overviewo Lo Lo Lo e e e

Component Overview of Group 555’s solution
Component Overview of Group 726’s solution
Component Overview of Judex’s TREAT Lab solution

General ward work flow and encounters creation.
Forms and their information in DCM and DCC.

TREAT-Lab behaviour pattern
TREAT-Ward behaviour pattern
State diagram for the read operation. L.
State diagram for the write operation.
State diagram for the advice operation.

Component OVerviewol e e

Applied technologies. L
The architecture of Java. Lo o
The CORBA ORB architecture.
The hierarchical structure of an XML document.
DOM overview. o i e e e e e e e e e e e
The hierarchical structure of a DOM object tree.

TREAT Database episode structure.
TREAT Database results structure.
Database values and the way they are presented in the XML.

Example of database structure tree in memory
The algorithm for learning the database structure.
DBMS Server operations during initialisation.
getSubTreeAsXML method: The algorithm for retrieving an episode XML
checkLocks method: The algorithm for checking and setting a new lock

ix

LIST OF FIGURES

11.6 setRow method: The algorithm for updating an episode 93
11.7 The two types of episode update 94
11.8 The algorithm to determine if a call to calculation server is needed. 95
11.9 Class diagram of the DBMSClient. 97
11.10State diagram for the Session class. 99
11.11Relationship between the DOM object tree and GenericRows tree. 103
11.12Example of PathParser class functionality. 109
11.13Structure of the ASP scripts Lo oL 111
11.14Class diagram of the DSS Server component. 113
11.15Search Server: Applying a search criteria and the results obtained 116
11.16 Algorithm for porting information from ADBakt 118
12.1 Implementation directory structureo 125
12.2 Displaying and updating XML content during debugging 131
A.1 Screen dump of the learning of the database structure. 150
A.2 Screen dump of a a user interface locked by another user 151

A.3 Screen dump of a a user interface locked by the current user 152

Part 1

Introduction & Analysis

Chapter 1

Introduction

In 1929, Alexander Fleming, a bacteriologist at St. Mary’s Hospital in London found a
discarded petri dish containing staphylococci bacteria and a bit of mould. Around the mould
there was a clear patch. Fleming realised that the mould was producing an antibiotic substance
and named the antibiotic penicillin, after the Penicillium mould that produced it.

More than 10 years later, Howard Florey and Ernst Chain had found a way to produce and
purify penicillin so that it could be used to treat large numbers of patients.

In May 1940 Florey and Chain carried out one of the most important experiments in the
history of antibiotics. Eight mice were injected with a lethal dose of streptococci bacteria.
Four mice were used as controls and the rest of the mice were treated with penicillin. By the
next day, the mice treated with penicillin had recovered. The untreated mice were dead. Later
in the same year they tested the antibiotic on patients, demonstrating that it was effective
against many bacteria including those which cause blood poisoning.

In the late 1943 the mass production of penicillin had started. It enabled hospitals to provide
an efficient treatment for pneumonia, meningitis, wound infections, and many other infections.
Fleming, Florey and Chain were awarded the Nobel Prize for medicine in 1945 for their
discovery of penicillin.

During the 1950’s and 1960’s several new types of antibiotics (such as streptomycin) emerged.
This led to an even more efficient treatment of potential lethal diseases and bacterial infections.

Today’s selection of antibiotics is large, and each type of antibiotic can target a narrow spec-
trum of bacteria or a broad-spectrum of bacteria. (Porter 1997)

1.1 Motivation

The local symptoms of severe bacterial infections depends upon the type of bacteria. Local
symptoms are present in 80% of all cases of severe bacterial infection. Fever is usually one of
the main symptoms of all infections. An infection in the skin will cause the infected area to
appear red and tender, whereas a lung infection causes chest pain, coughing, and shortness of

4 Introduction

breath. Infections of the blood stream cause high fever.

When a patient is suspected of having a bacterial infection, the physician must decide if the
infection is severe enough to start treatment. If this is the case, the type of infection must be
determined and an antibiotic treatment prescribed.

The physician has several considerations to make before treatment is performed. The first
consideration is to determine the type of infection and severity based on the symptoms of the
patient. Second, to consider which antibiotic drugs are most likely to eradicate the infection.
Third, the physician must consider the benefits and detriments of each of these antibiotic drugs.
The benefit is the recovery from the infection. The main detriments are total (monetary) cost
of treatment, side effects caused by the treatment, and risk of developing bacteria that are
resistant to this antibiotic. (Leibovici, Fishman, Schgnheyder, Reikehr, Kristensen, Shraga &
Andreassen 2000)

Unfortunately, the considerations performed by the physician often leads to an non-optimal
treatment. Annually 35.000 patients in Denmark receive treatment against severe infections or
bacteraemia. It is estimated that 40% or 14.000 of these patients receive a treatment with an
inappropriate antibiotic. The outcome of this treatment is estimated to be the death of 1.400
patients annually. Projecting those numbers upon the population of the European Union (370
million inhabitants), annually 1.036.000 patients receives inappropriate antibiotic treatment
and 100.000 of these die. Furthermore, the extensive use of broad-spectrum antibiotics in
order to lower the death rate, has led to a increase in bacterial resistance to antibiotics.
(www.treat.dk 2001, Leibovici et al. 2000, Strém 1998, Andreassen 2001)

The solution to this problem would be a computerised system that will support and aid the
doctors in their antibiotic treatment decisions. Such a system have been tested and employed
in 1996 at LDS Hospital, Salt Lake City, Utah. Results from the system show an improvement
in the antibiotic therapy and reducing the antibiotic expenses. (Evans, Classen, Pestotnik,
Clemmer, Weaver & Burke 1995, Pestotnik, Classen, Evans & Burke 1996, Gomez 1996)

Preliminary testing of a similar decision support system for antibiotic treatment in cases of
bacteraemia urinary tract infection has shown that the system’s suggestion of an antibiotic
treatment provides coverage in 88% of the cases. The suggestions given by a physician provided
coverage 60% of the cases. In addition to that, applying the system’s treatment reduced the
cost of treatment. (Kristensen, Andreassen, Leibovici, Reikehr & Kjeer 1999)

1.2 Focus of Project

The focus in this project is the medical information system. The goal is to create a working
framework for a patient journal combined with a medical decision support system. The frame-
work should be seen as a black box for medical information engineers (see figure 1.1 on the
facing page). By combining a database, a medical decision support model, and a user interface
to this system, an engineer would have a system capable of handling access by multiple users,
advice generation, and storing and retrieval of information from the database. It is believed
that such a system would reduce development time and effort for medical information systems.

The functionality and usability of such a framework will be validated by applying it to the

1.2 Focus of Project 5

User Interface

Decision
Support
System

Information System
Framework

‘-
Database t -

Figure 1.1: Focus of this project.

TREAT project. The TREAT project is initially going to be implemented and deployed in
Aalborg Hospital.

Chapter 2

TREAT

TREAT is a medical information system that includes a decision support system designed for
providing advice on antibiotic therapy. The main goals of the system are:

e To reduce the number of inappropriate antibiotic treatments given to patients.

e To reduce use of broad-spectrum antibiotics in order to prevent an increase of resistant
bacterial strains.

e To build a framework for medical decision support systems, exemplified with the TREAT
system.

The system is to be installed and tested in different hospitals in Denmark, Germany, and
Israel. Later on, the system is plaeed to be available as a world-wide commercial product.
The system is to be integrated into the existing information infrastructure (especially with
access to the clinical and microbiological databases) of the hospitals and provide an acceptable
user interaction.

The TREAT project is a joint effort between Aalborg University in Denmark, Freiburg Univer-
sity in Germany, and Rabin Medical Center in Israel. The commercial partner in the project
is a Danish company named Judex DataSystems. The European Union finances TREAT
(contract number: IST-1999-11459). The total cost of the project is estimated to 1.604.034
Euro.

Preliminary testing of the system was done on bacteraemia cases in the urinary tract. The
conclusion was that such a system would suggest antibiotic treatment that covers 377 out of
426 cases. The suggestions given to the same cases by a physician provided coverage in only
259 of the cases. The cost of the treatment suggested by the system was lower than the cost
of the treatment suggested by the physician. (Kristensen et al. 1999)

2.1 Overview 7

im omi

erm nal Ter m nal

Microbiologist / Physician

= -

| DSS

Managenent Modul e
/Syst eM\
dinical dinical TREAT
Chemi stry M cr obi ol gy Dat abase
Dat abase Dat abase

Figure 2.1: An overview of the modules within the TREAT system.

2.1 Overview

The TREAT system consists of several modules, as shown in figure 2.1. The system consists
of different databases, a management system and several clients:

Clinical Microbiology Database This database contains bacteriological test results ob-
tained from blood samples. It is maintained by the Department of Clinical Microbiology
(DCM).

Clinical Chemistry Database This database contains chemical test results obtained from
blood samples. It is maintained by the Department of Clinical Chemistry (DCC).

TREAT Database This database contains information about all the patients the TREAT
has been used on. It contains information about the bacterial infection, the treatment
advised by TREAT, the actual treatment by the physician, and treatments suggested
by the microbiologist.

Management System Is used as a gateway for handling access from the terminals to the
databases and the DSS Module. The management system also serves other purposes such
as logging changes in the database® and preventing users from simultaneously modifying
to the same information.

DSS Module This is a stochastic model based on knowledge about infections and statis-
tical information. It is used for generating an advice regarding antibiotic treatment.
The generated advice is based on the same considerations as the physician’s advice of
treatment.

'Required by Danish law according to Nordjyllands Amtsrad (1996)

8 TREAT

Terminals The user’s interface to the system. It’s used for adding or modifying information
about a patient, as well as obtaining advice regarding antibiotic treatment.

The above mentioned modules form the basis for two technical solutions: TREAT Lab and
TREAT Ward.

2.1.1 TREAT Lab

This solution is the first phase of the project and is an intra-departmental information system.
Its sole purpose is to aid the microbiologist in suggesting a proper antibiotic treatment for
the patient to the physician. Since TREAT Lab is only for microbiologists, it is going to be
deployed in the Department of Clinical Microbiology.

2.1.2 TREAT Ward

Departmental system The TREAT Ward is the full implementation of the TREAT system.
This solution is a inter-departmental information system. It is going to be deployed in different
departments of the hospital and is intended to aid both the microbiologist and the physician
in choosing the proper antibiotic treatment.

2.2 Technical Platforms

The TREAT system is initially going to be installed at Aalborg Hospital. This section will
therefore feature a short overview of the existing components at Aalborg Hospital and the
current implementation of the DSS Module.

2.2.1 DSS Module

Although this component is under development, a pilot project called Morty, has been devel-
oped using modelling software from Hugin, Excel spreadsheets and VBA2. The time required
by the calculation of an advice is about 12-20 seconds. Access to this module is done through
VBA - but Klitgaard, Fisker, Hansen, Ann, Kay, Lindstrgm & Sgrensen (2000) has built a
Java interface.

The advice Morty generates can be divided into two sequential processes. The first process
is to calculate the mortality for each type of antibiotic treatment®. The second process is to
calculate the cost of each type of treatment.

*Visual Basic for Applications. A language used for manipulating components of Microsoft Office suite.
3Currently Morty can administer more than 36 types of different treatments

2.2 Technical Platforms 9

2.2.2 Therapeutic Benefit Calculation

Mortality is an expression for the effectiveness of an antibiotic treatment. It is the probability
of patient surviving an infection given a certain treatment. The mortality calculation is
performed for all types of treatments. The result of the mortality calculation will be a list of
treatments paired with their mortality.

2.2.3 Cost-Benefit Calculation

Cost-benefit analysis is a technique for comparatively assessing the costs and benefits of an
antibiotic treatment. The cost-benefit calculation of each treatment is measured in life years.
Cost-Benefit calculation is based on 4 parameters:

Mortality of treatment This is the difference between the mortality of a treatment sug-
gested by the DSS module compared to the mortality of not administering an antibiotic
treatment.

Monetary price of treatment This is the total amount of money spent on the antibiotics
and administration of a treatment.

Side effects Some antibiotics can cause harmful side effects on the kidneys or the ears. Treat-
ment of such side effects is also a part of the cost calculation.

Ecological cost Ecological cost is the spreading of bacteria resistant to different types of
antibiotics, resulting in loss of treatment opportunities for future patients.

The result of the cost calculation will be a list of treatments paired with their cost-benefits.

2.2.4 Clinical Microbiology Database

This database is based on the ADBakt system (produced by Autonic). The system is cur-
rently solely used internally, at the department of clinical microbiology (DCM). The system is
based on a Token Ring net and resides on an IBM mainframe running AIX. The database is a
post-relational database from Caché, and can not be accessed from external applications. The
only means of access is a dump module, that can dump selected tables and fields at a specified
interval. Plans has been made for upgrading the user interface and the search capabilities of
the system, by purchasing a web interface built on Java and XML. This web interface is called
WWBakt and has already been deployed in a Swedish hospital. (Frydensberg, Kristensen,
Nielsen, Rasmussen, Rasmussen & Stepien 20005, Klitgaard et al. 2000, Schgnheyder 2001)

2.2.5 Clinical Chemistry Database

The clinical chemistry database is based on the LABKA system (produced by CSC Data-
lab). Patient information and it’s associated blood sample information is stored in LABKA

10 TREAT

database. The patient information include CPR number, name, department where the pa-
tient is admitted, time when the samples was taken, and more. Test results of the samples
are automatically added to the database. The system is based on a HP 100 server running
HP-Uniz. The database is currently an Image2 database. A process of porting it to an Oracle
81 database has already been started. Using Oracle 81 a SQL-link should be possible. The
current system suffers from a 15 minutes latent time interval, since approximately 1500 clients
performs a total of 28.000 requests on a daily basis. The LABKA clients are located in sev-
eral departments, enabling physicians to access chemical test results. Only a few users from
the DCM has access to this system, and LABKA system is hardly used in the daily working
procedures at DCM. (Frydensberg et al. 20005, Klitgaard et al. 2000, Schgnheyder 2001)

2.2.6 AS-400

This is an administrative database containing information about patients date of admission,
name, CPR number, as well as clinical history. This Database is distributed among the
departments of Aalborg Hospital. The system is based on 14 IBM AS-400 servers connected
together via a Token Ring net. The database used on these systems is a textitIBM DB2
database. Although ODBC access should be possible, previous attempts had failed. Data
from this database can only be obtained through parsing a dumped text file. The latency
for updating information in this database is approximately 4 weeks. (Klitgaard et al. 2000,
Frydensberg et al. 200056, Schgnheyder 2001)

2.2.7 CPR Register

This database contains information about date of birth and date of death of the inhabi-
tants. The information of interest is whether the patient is still alive 30 days after the end of
treatment. This mortality information is gathered for performing statistical analyses on the
information in the TREAT database.(Frydensberg et al. 2000b)

Chapter 3

Previous Work

Two other groups of students from AAU has previous been involved in creating a solution for
the TREAT system. The following sections will look into each of these previous solutions.
The knowledge obtained about their systems is derived from their reports, worksheets and
meetings with the different system designers.

3.1 Group 555

Klitgaard et al. (2000) has designed and implemented a solution of the TREAT Lab system.
They chose Java as language of implementation. Their design is based on a very thorough
analysis of the problem area. Part of this analysis is a description of the different actors
involved in the treatment.

The main focus in their report was the Management System and the Terminals (see section 2.1
on page 7). Connections to both the TREAT database and the decision support model has
been implemented. They made no connections to the Clinical Microbiology Database (AD-
Bakt) or the Clinical Chemistry Database (LABKA). They assumed that the information from
these databases is inserted automatically into the TREAT Database.

Their presented solution was based on the client-server architecture. The clients are appli-
cations handling only the presentation of information. The server handles the logic and the
context of the entire system. An overview of the system is shown in figure 3.1 on the next

page.

The server side of the system consisted of three components:

Data This component handles the connectivity to the database. In this case TREAT Database
is made in Microsoft Access and a JDBC-ODBC driver is used for connectivity.

Computing This component handles the interaction with the model. Their solution is using
the pilot Morty project described in section 2.2. Since the model was implemented in
VBA, a COM automation interface is used for exchange of data. A Java Native Interface
is used for communicating between the Java classes and the COM automation interface.

11

12 Previous Work

Dat a
JDBC- CDBC
Bri dge
s 'Aient _ _ L _ |
; - - -
T T Mataxgds sggicgleitieg ;, 1 Use}r Java-: !
Dat abase Di stribution jects -7 Jnterface :
Conput i ng Cient
Java Sockets &
Nbrty oM Se?ic_afi ied . User =
W apper era bj ects interface

Figure 3.1: An overview of the components within Klitgaard et al.’s (2000)
solution.

See (java.sun.com/products/jdk/1.2/docs/guide/jni 2001) for more information about
Java Native Interface.

Distribution This is the management system, it handles requests from the clients and inter-
acts with the Data and Computing components.

All information regarding a infectious episode is encapsulated in a single class, called the
Patient class. This object is passed between the components on the server. It is serialised,
and is sent as string of bytes over the network between the client and the server.

Communication between the client and the server is handled by opening a socket connection
from the client to the server and sending a request (in this case an integer representing the
requested action) along with the parameters (usually the Patient object).

3.1.1 Evaluation
Several considerations were identified during the review of their project:

e The complex integration of the causal probabilistic model ! has shown to be a point of
failure during the testing of the system - it was unstable and crashed.

e The use of serialised objects as a way of communicating between the server and the clients
forces the entire system to be Java, since only Java can read it’s serialised objects. This
issue would be a significant if the server or the client has to be replaced by another
implementation.

e The system is totally context dependent. Any changes in the information structure of
database would require a code change in almost all the system components. It will force
recompilations of the entire system.

! Java code that calls native C calls to execute DCOM automation interface that will call VBA

3.2 Group 726 13

e Encapsulation is weak. It is hard to change components of the system without knowing
the entire system code.

e The system has a thick user interface client - a full blown Java application. This kind of
client requires high maintenance when new software version is available, or when bugs
are fixed. Applying some changes, it should be possible to convert the application into
an applet.

e No integration of ADBakt or LABKA.

e There is no distribution of the server components of the system. The Data component,
Distribution component and the Computing component are all linked together and are
communicating via pure Java method calls.

e No user permissions are enforced in the system.

3.2 Group 726

Frydensberg, Kristensen, Nielsen, Rasmussen, Rasmussen & Stepien (2000a) wrote an arti-
cle regarding the integration of clinical databases into a medical decision support system with
relation to the TREAT project. Their main focus was to connect the databases at the Depart-
ment of Clinical Microbiology and the Department of Clinical Chemistry at Aalborg Hospital
to the TREAT system.

They wanted to ensure a high availability of the system and high consistency of the TREAT
database. In order to achieve those demands they chose to base the TREAT database on
multiple machines, linked together with primary-backup protocol described by Budhijara,
Marzullo, & Toueg (1993).

Accessing of the LABKA and ADBakt is not a simple task. The ADBakt system has no
SQL-interface, and the only interface is a periodically dumped text files. The LABKA system
suffers from a long response time (on average of 15 minutes) due to a high number of requests
(approx. 28.000 requests daily).

In order to solve these problems they chose to make an intermediary database system. This
system will handle all data extraction from the LABKA and ADBakt systems, and store the
retrieved information in an intermediary database.

The presented system consists of the following components:

TREAT Servers These components are handling all access to TREAT database, if one of
those servers fails another will take over. This component is only used for storing and
retrieving patient information from the TREAT database.

CPN Server The CPN server (i.e. the decision support component) is used for generating
an advice for antibiotic treatment. Their focus was only on database availability and
the integration of ADBakt and LABKA into their system. No solution of integrating a
decision support module has been implemented nor proposed.

14 Previous Work

'dient dient |

—ZIZZZZZ-Z"l

: I User Ja"a: I ~ User 73

: |interface| I i nterface
“““ |

System wi t h redundancy

Javal
TREAT Server
(Primary)
TREAT
dat abase
ADngt-LABKA !
erver | RIN_o€lVEl
Java ! Javal TRE(AT kSer)ver
| nt er medi ar I 17ty COV | Backup
dat abase y P VI\\'{brty M I
L apper 1 TREAT
~ ADBakt LABKA Vit T dat abase
i nterfacelj nterface . IVbrt)yBll :
___________ |

Figure 3.2: An overview of the components within Frydensberg et al.’s
(20004) solution.

ADBakt-LABKA Server Information from the LABKA and ADBakt systems is obtained
by this component and stored in an intermediary database for fast retrieval by the
TREAT Clients.

TREAT Client A client that handles more than just the presentation of information - it
handles part of the logic as well. The client handles remote calls to the ADBakt-
LABKA Server, the CPN Server, and determines what information to store in the
TREAT Database.

Figure 3.2 shows the component overview of their solution. The components interacts with
each other via RMI over the network (Remote Method Invocation, described in
java.sun.com/products/jdk /rmi (2001)).

3.2.1 Ewvaluation

Like Klitgaard et al. (2000) they based their system on the Java Technology. A opposed to
Klitgaard et al. (2000), they used RMI. Despite the use of RMI, Java must still be used on
both the client and the server side.

An interesting aspect of their system is the fact that their system is module based, due to the
RMI technology. RMI makes the components more modular and encapsulated, since RMI is
enforcing the interface to be well defined. It is easier to replace and change modules.

A major plus in their system was the connectivity to ADBakt and LABKA, which has been

3.3 Judex 15

implemented, and is using an intermediary database to store the results.

There were still some downsides:

e The database backup system created in this proposal is not necessary. Backup and fail
safe architecture can be done by hardware and commercial products. Those products
are independent and of the applications running. When focusing on backup and fail safe
systems, one should investigate if such systems are actually necessary, as well as what
the consequences if the system is unavailable for a few hours (when the system is being
restored).

e Thick client. The client include part of the logic within it. It is hard to distribute the
system and maintain it. As with Klitgaard et al. (2000) solution, it should be possible
to convert the Java application into an applet.

e There is no documentation on about the objects and interface between the components.
It is assumed that Java objects containing the patient information, and are beeing
transferred (via RMI).

e The system proposed is totally context dependent. A change in the database structure
will includes changes in the code in almost all the components, and will force recompi-
lation of the entire system.

e No user permissions where enforced.

3.3 Judex

Judex DataSystems (2001) has chosen a different approach to a solution of TREAT Lab. Their
solution is a single user solution, implemented on a single computer. Their solution is built
in VBA and Microsoft Access. The Microsoft Access part handles user interaction, and the
VBA part handles interaction with Morty?. Judex’s solution has the ability to import dump
files from ADBakt into its own database.

At the moment, Judex’s system is the only solution featuring an integration of decision support
module and the ability import ADBakt information. These features make their system the
most attractive solution for the microbiologists at DCM. The system will contain a report
module for generating the filled out paper forms currently used in the department.

Their system is based on several components shown in figure 3.3 on the next page and described
below:

User Interface The user interface consists of several screens of input fields built in Microsoft
Access. The user interface is therefore tightly connected to the Access Database. It is
possible to search for an existing episodes based on CPR number or ADBakt number
(see section 4.1.1 on page 20) via the user interface. The user interface is divided up
in two parts. The first part is used for entering information by the microbiologist. The
second part is showing the generated advice.

2The same decision support component mentioned in 2.2

16 Previous Work

AppT 1 cati on|
User User
interface\ interface\
(i nput) (out put)
Excel Excel

Spr eadsheet DDE Spr eadsheet

)
Q
=
Q
O
8}
wn
Q

I nput Qut put
dat abase
Excel Mort y Excel
Spr eadsheet Spr eadsheet

Figure 3.3: An overview of the components within Judex’s TREAT Lab
solution.

Output Database The Microsoft Access database is divided into two parts (due to the close
connection between the database and user interface in Access). This part of the database
contains the advice results generated by the Morty component.

Input Database This part contains all the information the microbiologist enters into the
system and the information obtained by the ADBakt dump file.

Morty This descision support component is the same as described in pilot project in sec-
tion 2.2 on page 8. The Morty component uses Microsoft Excel spreadsheets for storing
temporary information and Microsoft Access database for retrieving patient information
and storing the advice calculation results. In order to invoke an advice generation the
user interface must use Dynamic Data Exchange? to call the Morty component.

3.3.1 Ewvaluation

The major benefit of Judex’s TREAT Lab solution has both an integration of Morty and
the ADBakt import functionality. Judex is building TREAT-Lab with a goal to make it
commercial. Judex has more resources to work on TREAT-Lab than a 4-month student’s
project. It has several downsides:

e The solution is based on a single user approach with all software installed on a portable
computer. Only one user can interact with the system at a time. If the computer is lost
or damaged nobody can use the system and all non backed up information in lost.

*Dynamic Data Exchange (DDE) is an inter-process communication system built into Windows. It enables
two running applications to share the same data.

3.4 Conclusion 17

e The connectivity to Morty is dependent on Excel as an intermediary media.

e As with previous solutions, Judex’s system is very dependent on the database structure.
The user interface and the databases are very tightly connected.

o Their proposed solution has a simple security model, based on user validation (access/no
access).

e There is no logging of the user operations in the system.

3.4 Conclusion

All the students’ proposals did not survive the "real life" test of making Judex adopt the
solution and use it. Few reasons may contribute to that:

e Both systems presented by the students where totally context dependent. TREAT is
a system that is evolving and changing even when those words are written. Changes
in the database structure will happen. It is extremely hard to adopt a system, where
by the time Judex get it - the database structure it was built on is probably no longer
up to date, and the unfamiliar system code has to be changed to comply with the new
database structure.

e Poor encapsulation. Learning how to convert the system into the current database, or
changing anything in one of the components will force Judex’s programmers to learn
the entire code of the proposed system (and not only the component that has to be
changed).

e Thick user interface that is not the optimal solution. Both student’s proposals had a
Java application as the user interface, and no separation between logic and presentation
components.

e Both student’s proposals didn’t have a clearly defined interface between the different
components.

e None of the solutions made by the students contained both a decision support module
(i.e. Morty) solution and integration of ADBakt and LABKA.

e Since Judex is making TREAT a commercial product. Only an optimal, complete, edge
to edge system, which is absolutely better than their own system, with enough additional
features (and by that saving future programmers time in Judex) will convince Judex to
take over unfamiliar system. This situation is even worse when taking into consideration
that a student project lasts 4 months, and after that those students are unavailable. A
proposed system should be highly modular, and allow Judex programmers to learn it
step by step, while still changing features in it. A proposed system should not force
Judex to learn it all from bottom to top before they can change a part of the code.
Learning and adopting someone else’s code is a resource demanding task, and a tough
management decision. It can only be done if the system to switch to is attractive enough,
and can clearly save money.

Chapter 4

Problem Analysis

This chapter will look into the area where the system is going to be implemented into. A
problem domain analysis will be presented, describing the work flow and identifying the actors
and major events.

Except when mentioned otherwise, this chapter is based on Klitgaard et al. (2000), Frydens-
berg et al. (2000a) and Frydensberg et al. (20006) and (Schgnheyder 2001).

4.1 Problem Domain

This section will describe the problem domain. The problem domain is a description of the
surrounding, the work flow and the environment the presented system is going to improve.
Descriptions of the major events in the problem domain will be presented, as well as identifying
the actors and the events those actors perform. The description in this chapter is of the current
situation in the Aalborg hospital.

4.1.1 Work Flow

The focus is on the workflow in the hospital, where physicians give treatment to patients
with sepsis and suspected bacteraemia. The workflow is divided into sub-elements. Those
sub-elements are called encounters. All encounters that belong to one patient are part of an
episode of infection.

Episode An episode is a treatment history of a patient with sepsis. A patient episode consists
of one or more encounters.

Encounter An encounter is associated with a treatment decision. An encounter represents
a point in time, the knowledge at that point, and the treatment given. Treatment
is given and adjusted until the bacterial infection is resolved. The only reason for
giving additional treatment or changing existing one is when new information about the

19

20 Problem Analysis

infection is available. This new information is leading to a new encounter, which can
leads to a new or adjusted treatment. See figure 4.1.

Simptoms of Sepsis

/ Patient Condition Changes Patient Condition Changes Patient Condition Changes \

Empirical
Encounter and
Treatment

2'st Notification

DCM morphology results ready 1'st Notification DCM Susceptibility results ready

» Encounter and » Encounter and
_ Treatment / Treatment
DCC results or
other tests ready

Infection Resolved

Figure 4.1: General ward work flow and encounters creation.

Initial Examination by the Physician

When a physician examines a patient, and suspects the patient of having sepsis, the empirical
encounter in the episode is initialised. The physician is requesting blood and concurrent
samples to be drawn from the patient. Concurrent samples are samples of pus obtained
from urine, wound infection, etc. The physician is filling one or both of the following forms:

LABKA Form The request form for the Department of Clinical Chemistry (DCC).
The LABKA form informs the technicians coming from DCC what tests (analyses)
and samples are requested. The LABKA form carries the LABKA Number on an
assortment of labels as well as bar codes.

Micro Request Form The request form for the Department of Clinical Microbiology
(DCM)?. On this form the physician (or more often the nurse according to instruction
from the physician) writes the requested tests and samples needed, as well as clinical
information, and the empirical treatment (if given). The clinical information can aid
DCM in the analysis process. The Micro Request Form carries a number that is only
intended for use by general practitioners and will no longer be referenced in this report.

It is common practice that samples for both DCC and DCM are taken at the same time,
usually by a technician from DCC. The requested samples are taken from the patient and put

1The Micro Request Form has just been renewed in Aalborg hospital

4.1 Problem Domain 21

into sample bottles. Each of the sample bottles is manufactured with a unique BacT /Alert
Number. Copy of the each of the BacT/Alert number can be pealed off from bottle. The
sample bottles are sorted out according to the type of tests required. Usually 6 blood samples
are drawned from the patient. Three are sent to DCM, and three are sent to DCC.

Samples for Tests in DCC Those tests and samples were requested using the LABKA
Form. The BacT/Alert numbers are pealed off the corresponding bottles and are at-
tached to the LABKA Form. The LABKA form along with the DCC oriented samples
bottles are sent to DCC.

Samples for Tests in DCM Those tests and samples were requested using the Micro Re-
quest Form. The Micro Request Form is labelled with the LABKA number from the
LABKA Form. The BacT/Alert numbers are pealed off the corresponding bottles and
are attached to the Micro Request Form. The Micro Request Form along with the DCM
oriented samples bottles are sent to DCM.

See figure 4.2 for graphical presentation of the forms and numbering. Initial, empirical an-
tibiotic treatment is given by the physician. This antibiotic treatment is guided by symptoms
indicating the source of infection and the physician prevalence of the symptoms. The treat-
ment and the associated encounter are empirical since almost no accurate data is available
about the sepsis. Additional empirical encounters could be created when more information
is available (for example x-ray results). The new information could cause treatment to be
adjusted.

Samples Arrive to the Department of Clinical Chemistry (DCC)

The blood and concurrent samples arrive to DCC along with the LABKA form.The patient
information and the BacT/Alert numbers of DCC samples bottles are entered manually 2 into
the LABKA system in DCC, including the LABKA number from the LABKA form.

Samples Arrive to the Department of Clinical Microbiology (DCM)

The blood and concurrent samples arrive to DCM along with the Micro Request Form and
the LABKA number that is already attached to it. A unique ADBakt number is created
manually® at the DCM reception. The ADBakt number is created by a machine which stamps
it on the Micro Request Form and produces labels with the same ADBakt number. Those
labels are placed on all the sample bottles, as well as on the back side of the Micro request
form. The back side of Micro request form is used during the analysis of the samples. See
figure 4.2 on the following page for a quick overview of what information reside on Micro
request form and LABKA form. The patient information may have already been fed into the
LABKA system in DCC (depends on what department has processed the patient’s request
form first), but is manually entered again into ADBakt. The BacT/Alert numbers of the

Zor maybe read via a bar code reader
3The ADBakt number is generated by taking a number bigger by one from the last Micro Request Form.
The LABKA number is zeroed every new year’s eve

22 Problem Analysis

DCM samples bottles are also added to the ADBakt system. There is no or very limited
access to LABKA from DCM, or to ADBakt from DCC. The most common access from DCM
to LABKA is to trace the "sampling" session ("whom, where, when"), what other analyses
were requested at the same time, and most frequently - the actual sampling time.

LABKA Form LABKA number: 044556
Patient Details:

CPR: 13-01-72 7654

First Name: Michael

LastName: Jackson

Please conduct the following tests: C-reaktive protein (CRP)
Bact/Alert Bact/Alert Bact/Alert

Number Number Number
8732 7223 5234

Bact/Alert Bact/Alert Bact/Alert
Number Number Number
8732 7223 5234

Samples and Form in DCC

Samples and Form in DCM

Micro Request Form
Patient Details:

CPR: 13-01-72 7654

First Name: Michael

LastName: Jackson

LABKA number: 044556

Please conduct the following tests: CERREBROSPINALFLUID, Blood Culturing
Bact/Alert Bact/Alert Bact/Alert Sepsis symptoms: HeadAck
Number Number Number » o
2234 2212 2213 Empirical treatment given: none
ADBakt ADBakt ADBakt
e sy lEr Bact/Alert Bact/Alert Bact/Alert DR
823 823 823 Number Number Number e
2234 2212 2213 823

Figure 4.2: Forms and their information in DCM and DCC.

Clinical Chemistry Results are Ready in DCC

The blood and other concurrent samples will be analysed in DCC to find abnormalities or
dysfunction organs. The analysis latency is 2-4 hours, but can be faster if the request is
urgent. The results from DCC are ready well before the results from the DCM. Three times
a day the DCC technicians check to see if there are any samples to be analysed. Those
samples are then put into the analysis machine and analysed automatically. The results are
automatically fed into the LABKA system, without special user interference (see section 2.2

on page 8). The physician in the ward can receive the results from the LABKA system in two
ways:

e The physician have an access to LABKA system, and can view the sample analysis
results when available.

e Using the internal hospital mail system, the physician receives a paper with the LABKA
results.

If an initial treatment has to be given, or the empirical treatment that has been given (see

section 4.1.1 on page 20) has to be adjusted, a new empirical encounter is created, and is
associated with the new treatment.

4.1 Problem Domain 23

Morphology Results are Ready in DCM

The blood and microbiological concurrent samples are incubated in DCM inside a heating
cupboard, typically for 24-36 hours. The goal is to determine whether the sepsis is caused by
bacteraemia, and if it is a case of bacteraemia, to identify the morphology of the bacteria that
causes the infection. Culturing is the process of aiding the existing bacteria multiplying by
providing them the optimal growth conditions (for example warmth). Blood Culture is the
result of a blood sample culturing. The culturing is needed since the original blood samples
contain too few bacteria. During the culturing, existing bacteria will multiply, and will be easy
to find and identify under a microscope. Due to the fact that different bacteria grow better
in different environment, two of the samples put in the cupboard are aerobic (with oxygen)
and one is anaerobic (without oxygen). Those three blood sample bottles make up a Blood
Culture Set. The samples are placed in special bottles that have carbon dioxide indicators
built into them. The bacteria metabolism releases carbon dioxide. The indicator in the bottle
response to carbon dioxide and change its colour. A special sensor in the each of the heating
cupboard cells can use the change of a bottle indicator colour to find the level (and rate of
growth) of the bacteria in the bottle. Above a certain level or a steep growth of carbon dioxide
in a bottle, the sensor in the heating cupboard will trigger and alarm. The DCC technician
will get a signal to observe the blood culture in the bottle and conduct various tests that
will reveal the morphology of the bacteria. The term positive blood culture refers to a
sample with bacteraemia, the term negative blood culture refers to the opposite. In case
of bacteraemia, the following aspects are used to categorise the bacteria into a possible groups
of pathogens:

e Morphology describes the external shape of a bacteria. It is classified according to
following forms: rod-shaped (rods), spherical (cocci), and spiral (spirilla).

e Motility is the ability to move independently, the movement is classified according to
following forms: no movement, randomly in one direction (peritrichous), straight line in
same direction (polar).

e The Gram’s Stain test is used for differentiating between two major bacterial cell wall
types.

All of the above aspects will be referred to as Morphology. Morphology results in DCM are
fed into the ADBakt system by the lab technicians. The empirical treatment is written on the
Micro Request Form (if treatment was given by the time the Micro Request Form had been
filled up). The clinical microbiologist can come up with two suggestions:

Treatment has to be adjusted, or given The clinical microbiologist contacts the physi-
cian by phone. The physician knows more about the patient current condition and
background (and usually also about organs abnormalities or dysfunction since the physi-
cian has access to LABKA result). The clinical microbiologist knows more about the
pathogen.

The current treatment (or the absent of treatment) was covering The morphology re-
sults are sent to the physician using the internal hospital mail system.

24 Problem Analysis

In both cases, the physician is receiving the morphology results from DCM. The physician can
follow the advice given by the microbiologist or not. The final decision is up to the physician.
If the physician is changing the existing treatment, a new 1st Notification Encounter (also
called Semi-empirical Encounter) is created, and is associated with the treatment decision.

Morphology results are not always updated in the ADBakt system before the physician is
receiving them, but are eventually updated later in ADBakt.

If no bacteria are found in the sample, it is removed after 7 days from the heating cupboard.
In special cases, it can remain in the heating cupboard for total of 3 weeks, for yeast detection.

Susceptibility Results are Ready in DCM

After the morphology results are available, the bacteria in the blood culture are tested for
susceptibility to antibiotics. Blood culture is smeared in a petri dish on an agar plate. Paper
disks coated with a fixed amount of different antibiotic drugs are placed in the dish. Those
antibiotics are applied to the pathogen in question, for checking susceptibility. The dish(s),
are incubated again for an additional 36 hours (latest equipment can shorten this period to
6 hours). When the waiting period is over, the zone of growth-inhibition around the disks is
relative to the antibiotic susceptibility 4. An accurate identification of antibiotic susceptibility
is now available and is entered manually into the ADBakt system. As with the morphology
results, the clinical microbiologist can contact the physician by phone (if change of treatment
is estimated) or sends the susceptibility results via the hospital internal mail system (if the
microbiologist thinks the treatment given is covering). As with morphology results, it is up to
the physician to decide if to adjust the treatment (or give one if it hasn’t been done previously).
If treatment is adjusted or given, a 2nd notification encounter is created. Susceptibility
results might be entered into ADBakt after the physician has already got them.

4.1.2 Identification of Actors

Actors are the persons that manipulate the system, i.e. the physicians and the microbiologists.
The patient is not an actor, since he is not manipulating the system.

Physician The physician is the person in the hospital that has the contact with the patient,
and is trying to cure the patient’s sepsis. The physician is the one that decides on
treatments. When treatment is decided and given to a patient, someone has to be
responsible for the decision. In order to assume responsibility on the treatment, the
physician has to sign the treatment. The physician is responsible for the decision of a
treatment (taking into consideration the information that was present at the time of the
treatment decision).

Clinical Microbiologist The clinical microbiologist is the person that analyses blood and
concurrent samples in the Department of Clinical Microbiology (DCM). When the Micro
Request Form along with the samples arrive to DCM, the clinical microbiologist generate

* Another technique, but more expensive and laborious, is to measure the growth of the bacteria in a liquid
medium - while exposing it to an increasing concentration of antibiotic drug.

4.1 Problem Domain 25

the ADBakt number, attach it to the Micro Request Form and enter it into ADBakt along
with the BacT/Alert numbers. As the time passes, the samples are analysed. The results
of morphology and susceptibility are entered manually into ADBakt. Needed treatment
adjustments are discussed with the physician.

Clinical chemist The clinical chemist is the person in the Department of Clinical Chemistry
(DCC). The clinical microbiologist enter BacT/Alert numbers and LABKA number from
the LABKA form into the LABKA system.

Any other authorised personnel Refers to other personnel that are doing administrating
tasks, usually to remove work load from the above actors. For example: a nurse updating
patient information or status, or a technician entering A DBakt numbers into ADBakt.

4.1.3 Identification of Events

Events are actions in the problem domain carried out by the actors. Events change patient
information. Viewing the latest patient information is always an option, but is not an event,
since viewing doesn’t change any patient information.

Examination by the physician The physician observes the patient’s infection symptoms.
Those observations occur multiple times. The physician gets additional information
from the patient about the patient’s background. Whenever new information is present,
the physician updates the patient information. This information is collected as the time
passes. When an empirical treatment is given, an empirical encounter is created.

Samples arrive to DCC Blood or concurrent samples are taken from the patient and sent
to DCC along with the LABKA form. Patient information and details about the samples
are updated in the LABKA systems, as well as the LABKA number from the LABKA
form and the BacT/Alert numbers of the samples designated for DCC.

Samples arrive to DCM Blood or concurrent samples are taken from the patient and sent
to DCM along with the Micro Request Form. ADBakt number is generated, and is
added to the Micro Request Form. The patient information, A DBakt number and the
BacT/Alert numbers of the samples are entered into ADBakt. Note that in one of the
departments, DCC or DCM, the patient information entered here redundant. It has
already been fed into LABKA in DCC, or into ADBakt in DCM, and since DCM has
the LABKA number on the Micro Request Form, at least the patient information could
automatically be retrieved from LABKA and ported into ADBakt.

Clinical chemistry results are ready in DCC Blood chemistry and abnormalities or dys-
function organs details are available 2-4 hours after the samples were given to DCC.
Those values are automatically updated in the LABKA system. If treatment is adjusted
empirical encounter is created.

Morphology results ready in DCM Morphology results are available between 24-36 hours
after they were taken. Those values are updated in ADBakt system by the clinical mi-
crobiology staff in the lab. If treatment is adjusted 1’st notification encounter is created.

26 Problem Analysis

Susceptibility results are available in DCM Susceptibility to antibiotic results are ready
in DCM between 24-36 hours after morphology results has been obtained. As with the
morphology results those values are updated in ADBakt system by the clinical microbi-
ology staff. If treatment is adjusted 2’st notification encounter is created.

Additional information available Whenever a non DCM or DCC related information is
adjusted (for example the patient condition has gone worse, x-ray results has arrived),
an encounter is created and is associated with the treatment decision. It is important
to note that the type of encounter create is according to the information present at
the time of the treatment decision. As soon as there are morphology results - no more
empirical encounters will created. As soon as there are susceptibility results - only 2nd
notification encounters will be created.

4.1.4 Integrating an Information System

Even though it takes at least 48 hours before an accurate analysis can be obtain, the hospital
staff (the actors) have to give treatment to the patients. Treatment should be optimal even
during the time when almost no accurate knowledge is known about the infection (the bacter-
aemia in question). During the course of time, as new information about the bacterial infection
is added, treatment has to be adjusted in the best suitable way, taking into consideration the
best treatment and the treatment already given.

The TREAT system is coming to aid in this process. It provides a central repository - a place
where all the actors in the system - the physicians, the clinical microbiologists, and anyone
else authorised can meet and see all the history and current status of the patient’s (suspected)
bacteraemia episode. All of those users can access the system anywhere in the hospital, share
the information of the patient, and some of them can update it. The advantage in a system like
that is not only it’s "patient journal" capabilities, which is an asset by itself, but the additional
feature of the system to give advice to the users. By a click of a button, the user can ask for
an antibiotic treatment advice, according to the latest patient information, and taking into
consideration all the knowledge about the patient and the numerous possible treatments and
antibiotics. No physician could calculate and take into consideration so much information as
the advice calculation does. Computers can organise and distribute information - but also
help in giving treatment advice.

There are few clear advantages of integrating TREAT into the hospital environment:

Generating an antibiotic treatment advice This advice calculation takes into account
huge amount of information that couldn’t have been analysed and evaluated by human
as fast as it is done by a computer. Preliminary results shows that more bacterial
infection cases would have been cured if treatment would have been given according to
the advice system and not according to the physician decision (see section 2 on page 6).

Central repository a “patient journal”, where all information about bacteraemia episode of
a patient is collected and later used for research.

Seamless integration of information Integrating the information present in ADBakt and
LABKA systems.

4.1 Problem Domain 27

All of the above leads to an easier access to latest patient information as well as information
sharing between users of the system. The immediate improvement is a more efficient workflow
between the departments involved, and better treatment decisions.

Chapter 5

TREAT Analysis

The TREAT system provides better access to latest information concerning an episode of
infection, as well as treatment advice. Two systems has been proposed in chapter 2 on page 6
- TREAT-Ward and TREAT-Lab. This chapter will analyse the differences and similarities
between the two.

This chapter will also discuss what is required from TREAT in order to fulfil a successful role
as an information system.

5.1 TREAT LAB Versus TREAT WARD

There are few differences between the systems:

5.1.1 Users Initiating the Episode

TREAT-Ward The actor that initiates the first interaction with the system (and the episode)
is the physicians that examines the patient (see section 4.1.1 on page 20). The first en-
counter in the system in this case is the empirical notification.

TREAT-Lab The actor that initiates the first interaction is the clinical microbiologist. When
morphology results are available in DCM (see section 4.1.1 on page 23), the clinical

microbiologist creates an episode for the patient and feeds morphology information into
the TREAT system.

5.1.2 Information Entered in the Initial Encounter

TREAT-Ward The information fed to the TREAT system in the initial encounter is the
empirical encounter information. The type of data entered is usually about of the
background of the patient, allergies, current observations etc. The physician that creates
the episode (and the encounter) is sitting in front of the patient. Sample for analysis

28

5.1 TREAT LAB Versus TREAT WARD 29
Clinical Clinical
User Microbiology Chemistry -SrRsEtg:;
(ADBakt) (LABKA) Y

0 Hours

Blood and concurrent samples

Blood and concu

rrent samples

24 to 36
Hours

24 to 36
hours

In2to 4
hours
Chemistry
results are
ready

New episode created for the patient.

Morphology results

Morphology results

Patient data updated and advi

1st encounter (includs both data belongs to the emperical and the 1st notification encounters).
ce generated. Empirical treatment information is updated.

Additional 24
to 36 hours

Antibiotic susceptibility results

4810 72
Hours

Treatment is adjusted.

2nd notification encounter. Patient data updated and advice generated.

Figure 5.1: TREAT-Lab behaviour pattern.

results are entered into ADBakt as soon as they are ready.

It is assumed that DCM

30 TREAT Analysis

in DCC and DCM are only taken at the time frame of this encounter. Data from those
departments will be available only few hours later (DCC) or 24-36 hours later (DCM).

TREAT-LAB The information fed to the TREAT system in the first encounter is a com-
bination of the Ist notification encounter and the empirical encounter. This encounter
happens when morphology results from DCM are available. The clinical microbiologist
is not sitting in front of the patient, and has none or very little information about the
background of the patient. Most of the information about the patient and the empirical
treatment comes from Micro Request Form (see 4.1.1 on page 20). The clinical microbi-
ologist can decide that the empirical treatment given should be adjusted, or wants to ask
the physician for more details regarding the patient’s background and current physical
observations. The clinical microbiologist enters the patient information, the empirical
treatment, the morphology results and the suggested treatment to the TREAT system.
The clinical microbiology morphology results are of the 1st notification encounter type.
Some of the information is about the already given empirical treatment, and the patient
background from the physician. This information is more of the empirical encounter
type. Due to that, the information fed to the system in the first encounter in TREAT-
Lab is a combination of data from the empirical and 1st Notification encounters.

5.1.3 Physical Location of the System

TREAT-Ward An inter-departmental information system. The system is used all around
the hospital, by the physicians, microbiologists, chemists and any other authorised user.

TREAT-Lab An intra-departmental information system. The system is used in the DCM.

5.1.4 Connectivity to External Systems

TREAT-Ward In TREAT-Ward there should be connectivity to both ADBakt and LABKA.
Connectivity to ADBakt is needed since some of the actors are microbiologists, and
ADBakt is used in DCM. Connectivity to LABKA is needed since some of the actors

are clinical chemists from DCC, as well as the fact that the physicians that are viewing
DCC results via LABKA in the ward.

TREAT-Lab DCM has their own database system - ADBakt. TREAT-Lab must provide
connectivity to it. There is limited or no connectivity in DCM to the DCC information
system - LABKA. Due to that, information like patient data is manually entered twice
for one patient. To LABKA in DCC, and once to ADBakt in DCM (see section 4.1.1 on
page 21). Just by examining this detail, it is clear that seamless sharing of the patient
information between the departments would be a plus in DCM and DCC, as well as the
fact that the chemical analysis information present in LABKA could also be helpful in
DCM (chemical analysis results are ready in DCC well before morphology results are
ready in DCM). Connectivity to both ADBakt and LABKA in TREAT-Lab (as it is in
TREAT-Ward), will improve DCM workflow and efficiently.

5.1 TREAT LAB Versus TREAT WARD

31

Clinical
User Microbiology
(ADBakt)

0 Hours

Clinical
Chemistry
(LABKA)

Treat System

New episode created for the patient.

Emperical encounter. Patient data updated and advice generated. |

nitial treatment given.

Blood and concurrent samples

Blood and concurrent samples

2 to 4 hours

Chemistry results

A possible empirical encounter due to the clinical chemistery or other resul

ts (XRAY).

24 to 36
hours

24 to 36

Morphology results

Hours

necessary.

1st notification encounter. Patient data updated and advice generated. Treatment adjusted if

Another 24

to 36 hours

4810 72

Antibiotic susceptibility results

Hours

necessary.

2nd notification encounter. Patient data updated and advice generated. Treatment adjusted if

Figure 5.2: TREAT-Ward behaviour pattern. It is assumed that DCM
results are entered into ADBakt as soon as they are ready.

32 TREAT Analysis

5.1.5 Treatment Advice

Advice treatment may differ between TREAT-Lab and TREAT-Ward, since the amount and
type of information is different between the two versions. The advice calculation component
is under constant development, even when these pages are written, so it is always assumed
that the advice may differ.

5.1.6 Project Phases

TREAT-Ward The second phase - fully integrating the system in the hospital environment.

TREAT-Lab The first phase of the TREAT project - implementing the system only at the
clinical microbiology lab.

5.1.7 Existing System

TREAT-Ward - Never been built.

TREAT-Lab Few efforts where made to build TREAT-Lab with simultaneous access by
multiple users - but none of them has been the target of further development or imple-
mentation at DCM (see section 3.1 on page 11 and 3.2 on page 13). The commercial
working system (see section 3.3 on page 15) is built on a dedicated machine. All the
components of the system must reside on this same physical machine. It is a single
user system, making it of little value in a multi-user environment. This single machine
solution can only be suited for a single user, testing, or demonstrating TREAT-Lab.

After carefully examining the differences above, it can be seen that TREAT-Lab is actually a
downscaled TREAT-Ward, while emphasising on the following:

e A different user interface is needed for the initial user interaction with each of the
systems. In TREAT-Lab the first contact is a combination of the empirical and the 1st
notification encounters. Data presentation in the user interface should probably focus
more on the DCM results. In TREAT-Ward the first contact with the system is the
empirical encounter. Data presented on the user interface should probably focus more
on the background and current patient status.

e Different advice is probably needed according to the type, amount of information and
user interface version. Since all the episode information can be passed to the calculation
component, it all ends up in an additional parameter that will indicate what type of
user interface is being used.

e Seeing from information point of view, TREAT-Lab is just the crippled version of

TREAT-Ward, and with fewer actors.

The system presented in this report can be seen as both the Ward and Lab system versions,
due to the fact that no user interface design has been enforced. Any user interface expert can

5.2 TREAT Elementary Operations 33

[Invalid user or no
. Login User READ permission] .

identified

[Valid user with \,090““
READ permission]

4)
Invalid Ready for Episode selected Episode
search an episode J [values
criteri Search /% shown

Locate another episode

Logout

A4

Figure 5.3: State diagram for the read operation.

design two different user interfaces for the Ward /Lab different initial encounter, focusing on the
different data that has to be shown. The infrastructure of the systems is the same. An advice
generation is based on numerous parameters, so an additional parameter will indicate the type
of user interface used. Since TREAT-Lab is just a sub system, with different user interaction
and less encounter functionality, it can be said that the system presented in this report is
actually TREAT-Ward. Changing user interface functionality, creating a new subclass of user
interface for TREAT-Lab, and deploying the system in the DCM, will transform the presented
TREAT-Ward system into TREAT-Lab. The rest of the system is kept the same.

Since all efforts where on the direction of TREAT-Lab, and TREAT-Ward was never created,
the gap between the exiting TREAT-Lab and the non-existing TREAT-Ward has been widen.
In this version the gap has vanished. The current version fits them both, with only user
interface changes. Since the new TREAT version can also be deployed on one machine, and
in one department, and any user interface can be applied, it actually includes the "features"
of the old versions. The power of the new TREAT version is that it is totally distributed and
has a multi-user access while keeping data consistency. Every actor in the system can have

a different user interface - according to it’s role. The new system can now be used for both
TREAT-Lab and TREAT-Ward, by the change of the user interface alone.

5.2 TREAT Elementary Operations

The treat system should provide a few basic operations:

Read Reading patient episode information and values from the system (see figure 5.3). All
actors can read information from the system, from an administrating nurse to the physi-
cian in the wards. The process includes identifying the user and validating the user’s
read permissions. The user can search for the patient episode according to different
search criteria. When the requested episode has been located, the user proceeds into
viewing the latest episode values, until the user has decided to search for another episode
or logout.

Write Updating patient episode information and values. The user can also create a new
episode (see figure 5.4 on the next page). Write is an obvious operation since information

34

TREAT Analysis

[Invalid user or no
Log in User READ or WRITE permissions]
. >\ identified

[Valid user with READ
and WRITE permissions]

A
Invafid Ready for
search an episode
critexia <

Episode selected

Locate another episode

episode
created

Figure 5.4: State diagram for the write operation.

has to be entered into the system. The process includes identifying the user and verifying
the user’s write permission, searching for an existing episode or creating a new one,
updating episode values, saving the values to the database - and logging out.

Advice Generating an antibiotic advice according to the patient information - see figure 5.5

on the facing page. This operation is one of the unique features of the system. This
operation differentiates the system from other patient journal systems. The advice
operation is done by users that are going to give or suggest an antibiotic treatment. Even
though the advice results are saved, the advice is only a recommendation and eventually
can be disregarded. It is up to the user whether to follow the advice, or give a different
treatment. The advice gives the best antibiotic treatment taking into consideration
the encounter information, and previous treatments. Similar to the operations above,
the process includes identifying the user and checking it’s rights, locating the requested
episode, asking for the advice, and observing the TREAT system’s antibiotic treatment
suggestion.

[Invalid user or no
READ or ADVICE permissions]

Log in
09! User

identified

[Valid user with
READ and ADVICE

permissions]
A Episode located Advice request
Invalid Ready for
. Generate
search an episode ;
L\ advice
critexia Search

Locate another Save Advice
episode results

Figure 5.5: State diagram for the advice operation.

Chapter 6

System Requirements

This chapter provides an overview of the requirements for the TREAT information system.
Several issues such as the architecture of the system, representation of information, and secu-
rity requirements to the system will be discussed.

6.1 Simultaneous Access

Multiple users must be able to view and update patient information, from different locations
in the hospital, on different computers, at the same time. The system must enable two users
that are discussing patient condition or therapy (on the phone) to view all the current data
of the patient on their computer screens, and even update it while talking.

When accessing patient data, no two users should be allowed to modify the same information.
A consistency and concurrency mechanism such as locking has to be enforced. The locking
mechanism enables a single user to lock part of the information. Only a user locking an
information is allowed to modify it. The lock is exclusive, meaning that no other user can
have a lock on the same information nor modify the locked information, for the duration of the
lock. Users should always be able to see who is currently locking the requested information.

6.2 System Architecture

The TREAT information system has multiple users in different locations, and all of these users
access the same databases and the same DSS module. In order to provide a single point of
entry to the databases and the DSS module a client/server solution is optimal.

The client-based software is the front-end of the system. This is what the user sees and
interacts with. The clients primary task is to manage the user-interface part of the system,
validate data entered by the user, and dispatch requests to the server.

The server-based application receives requests from client programs. Depending on the type
of request it will perform a calculation of an advice or execute database retrievals or updates.

37

38 System Requirements

When the request is done the server will dispatch response to client.

6.2.1 Low Maintenance

The main problem of maintaining the application on the client side (i.e. workstation) is vry
important. Changes to user interface and it’s functionality should only be done by changing
code in one place on the server, instead of updating client application on a numerous number
of workstations in different locations at the hospital.

6.3 System Components and Open Interfaces

The TREAT information system will be integrated on several different hospitals. Each of
those hospitals has its own environment with multiple sources of information. In the current
case (Aalborg Hospital) the system should be connected to two external systems: the ADBakt
and the LABKA system, but in other hospital environments these systems will have different
functionality, connectivity and operating system.

In order to adapt to these changes in external systems, the TREAT information system must
be designed and implemented in a modular fashion with clearly defined interfaces between
the modules. The use of modular architecture and open interfaces also enables the system
engineer to easily replace components or port modules to other platforms.

The modules should be encapsulated parts of the system performing a well-defined task, such
as the DSS Module handling advice or the user interface displaying information. With modular
architecture of the system, it should be relatively easy to upscale the system to run distributed
on several machines.

6.4 DSS Module Usage

The usage of the DSS Module is a resource-demanding task in the terms of CPU time and
memory consumption. Invoking the DSS module should only be done when information added
or modified, since only in this case the previous advice results (if any) are no longer valid.

6.5 Security

The information system offers an improved accessibility to confidential clinical information.
In order to prevent unauthorised access to the information several measures have to be taken.
These measures includes user validation, activity log, as well as other several access restrictions
to avoid information misuse or abuse. (Nordjyllands Amtsrad 1996)

6.5 Security 39

6.5.1 Users

The simplest way to restrict access to a system is the user validation approach. A user must
state a valid user name and password in order to gain access to the system. The users should
have different permission levels, thus restricting their access to the functionality of the system.
The levels used in the TREAT information system are:

No permissions The user has no access to the information system and will be rejected during
login.

Read access to system This lowest permission, the user is only granted read access to
all information and may not generate any advice (for example nurses that administer
treatment).

Generate an antibiotic advice This grants the right to use the DSS Module to generate
an antibiotic treatment advice. Users granted this permission are the physicians or the
microbiologists giving an advice regarding treatment.

Write access to system This level of rights enables the user to create new episodes or
modify information within existing episodes. Users granted this permission are the
physicians or the microbiologists submitting information into the system.

Administrative access to system This is the highest level of rights, a user with adminis-
trative access to system can perform administrative operations, for example correcting
values in closed encounters.

These permissions must be enforced on the server side of the system in order to maintain
integrity of the system. The permissions of a user should be reflected on the user interface,
thus disabling (or hiding) write and advice functionality on the user interface for a user with
read only access, or provide all the possible information for users with administrative rights.

6.5.2 Logging

The logging functionality logs all access the system and all modifications made in the database
to a text file. The logging is required by law according to Nordjyllands Amtsrad (1996).This
logging serves two purposes:

1. Register who is doing what to whom, i.e. which person is responsible for altering of
information in the system.

2. Enable the database to be reconstructed after the system has been compromised or
corrupted.

40 System Requirements

6.5.3 Network

Due to the fact that the system is handling confidential clinical information, measures should
be taken to prevent unauthorised clients from accessing the system. Preventing 3rd party
from listening (eavesdropping) to the communications between the clients and the server.

6.6 Backup

The data contained in the system may become corrupted due to several causes. A power
failure or a hardware crashes might result in a loss or a corruption of the information stored in
the databse. Another case might be if a user (application) by intent or accidentally corrupts
or deletes information.

The system is handling important clinical information. Any loss or corruption of such infor-
mation could result in a wrong treatment decision which may lead to the death of the patient.
Therefore it is a vital requirement that all information handled by the system is backed up.

6.7 Representation of Information

Part of the information fed into this system is based on empirical observed symptoms or
findings. Microbiologists or physicians can have different interpretations of how observed
symptoms or findings should be classified, they might also have different interpretations of the
information contained within the system. These different interpretations can lead to a wrongly
generated advice by the DSS Module or even worse a wrongly issued antibiotic treatment.(van
Bemmel & Musen 1997)

To prevent users from having different interpretations of the data within the system, all
information must be stored in a consistent and standardised way.(van Bemmel & Musen 1997)

It should be possible to change this information from one TREAT system deployment to
another, since different hospitals may use different information (for example different depart-
ments names). Those values should not be coded into the user interface.

6.8 Context-Free Core System

The context free core system is a system not closely connected to the information stored within
it. Such a system is said to be independent of the information it handles.

The main advantage of using a contest free core system is that a minor changes in the structure
of the information will only require changes in database where the information is stored and
on the user interface where the information is presented.

Since the TREAT information system is under constant development, a context free system
is vital. During the development phase the information used by the system and the structure

6.8 Context-Free Core System 41

of this information is not static, as well as the DSS Module that is still under development.

One of the goals of the TREAT project is to build a framework for medical decision sup-
port systems. Such a framework must be context free in order to support different types of
information and decision support models.

Part 11

Design

43

Chapter 7

Components Identification

This chapter gives an overview of the components within the TREAT information. From
this chapter on, there will be no more focus on previous TREAT versions. When mentioning
TREAT information system, it refers to the TREAT system solution presented in this report.

In this chapter a sketch of the different components and their mutual interaction will be
presented, the detailed presentation is kept for later chapter. Most of the components are
internal. Internal components are integrated inside the TREAT information system. Few of
the components are external to the TREAT system. The ezternal components are compo-
nents that are more likely to change within the scope of the current TREAT system, or when
porting the system to another hospital envirunment. The external components are working
independently of TREAT, mainly for communication or porting data from existing hospital
systems.

Even though there was an effort to minimise the technological terms used in this chapter; it is
difficult to avoid it. This chapter is closely connected to the description of applied technologies,
due to the fact that this chapter presents the component’s general functionality and the way
they interact with each other. When talking about the way the components interact, it is
inevitable not to mention the technology used.

7.1 General System Overview

The TREAT information system is based on a prototypical three-tier Architecture. The three
layers are:

Content Layer The content layer handles all storage of information. A system could have
a database or a set of files as its content layer.

Logic Layer The logic layer handle the processing of the information and exchanges data
between the context layer and the logic layer.

Presentation Layer The presentation layer is the interface to the user, it purpose is to
display information obtained from the logic layer and allow the user to interact with the

45

46 Components Identification

system.

The system architecture containing three core components: The Calculation Server (con-
taining the DSS Module), the TREAT database, and the Clients. A fourth component,
the Database Management System Server (DBMS Server) is handling communication
between the clients, the TREAT database, and the Calculation Server. An overview of the
components and their connections is shown in figure 7.1 on the next page.

Each of the components is highly encapsulated, and performs a specific task. The commu-
nication and protocol between the components is very simple and specific. Those properties
gives the TREAT system a powerful feature (as in any other strong encapsulated components
system): a minimised effort when replacing any given component, usually without the need
to change anything else in any of the other components.

The system is totally distributed. Most of the components can reside on different physical
machines, which gives a way to maximise the utilisation of the computer(s) power in hand.

The TREAT information system solution in this report has a web based user interface. Due
to encapsulation, a different user interface based on a different technologies and user interface
components can be integrated with minimal system changes. The web-based user interface
components in this report is a typical demonstration.

7.2 Internal Components

Internal components are the context free core components of the TREAT system. Thos
components will most likely not change, even when porting the system to a different hospital
environment.

7.2.1 Logical Layer
DBMS Server

The Database Management System Server is the core of the logic layer - and of the TREAT
system. It connects the clients to the calculation server and the TREAT database, providing
the client with a single, unified point of entry to the system and it’s functionality. The main
operations and properties of the DBMS server includes the following:

e Forwards requests and response regarding advice on antibiotic treatment from the clients
to and from the calculation server.

e Performs database lookups requested by the clients to the TREAT database.

¢ Since the system can be used by several users (and clients) simultaneously, the DBMS
server enforces data integrity and concurrency. It makes sure that no one is modifying
the same information simultaneously, by enforcing a locking mechanism.

7.2 Internal Components

47

i

Fully implemented Component

Proof of Concept Component

External (not implemented)
Component

Optional Component

Presentation Layer

Java

Search Client

CORBA

Java

Search Server

Logic Layer

Independent Update
Process from LABKA

Independent Update
Process from ADBakt

Independent Update

Process from
CPR-Register

Independent Update
Process from AS-400
(Patient Information)

Web Browser

HTTPS/HTML

[yve

ASP

Web Server

Java Method

Java

Web Gateway

Java

DBMS Client

CORBA/XML

.

Java

CORBA/XML

Java

DBMS Server <

Content Layer

SQL Server

TREAT
Database

Calculation
Server

Java

DSS Module

SQL Server

Calculation

Figure 7.1: An overview of the components within The TREAT informa-
tion system

HUGIN

48 Components Identification

e Keeps track on who is doing what, in a form of logging .
e Enforces users permissions when accessing the database.

o Provides access to the different classifications of information needed in the user interface.

The DBMS Server is implemented as a CORBA server and is a multithreaded system; i.e. it
handles requests from multiple clients concurrently.

Calculation Server

The calculation server is an independent device containing the decision support system for an-
tibiotic treatment (Morty - see section 2 on page 6). The decision support system is based on
Bayesian networks. The calculation server gives an advice of treatment based on the current
patient condition, previous treatments and antibiotic and hospital treatment considerations.
The system sees this component as a black box - that gives an antibiotic treatment advice.
Only an interface to it is built, as a proof of concept, supplying server and database connec-
tivity. The Calculation server is implemented as a CORBA server and can provide (depends
on the calculation actual implementation) services in parallel via multiple, multithreaded con-
nections.

7.2.2 Content Layer
TREAT Database

TREAT database contains the information about patients currently receiving or that has
received antibiotic treatment. The advice regarding antibiotic treatment generated by the
calculation server is also stored in the TREAT database. The TREAT Database connectivity
is done via the JDBC interface. Currently this database is an SQL Server, but it can be
ported to any database system by applying the right JDBC driver.

Calculation Server Database

The Calculation Server database contains all internal calculation data that is needed internally
by the calculation server algorithm. for performing antibiotic treatment calculation - for the
operation of the calculation server. It contains all the non-patient or episode related informa-
tion. Information in this database includes possible antibiotics information, cost information,
mortality information, and any other information needed for antibiotic treatment advice cal-
culation. The connectivity to the calculation database is done via the JDBC interface. The
database is currently an SQL server, but it can be ported to any database system by applying
the right JDBC driver.

'Required by law in Denmark, according to Nordjyllands Amtsrad (1996)

7.2 Internal Components 49

7.2.3 Presentation Layer

In the presented TREAT information system, the clients are thin clients - their only task is to
display information about patients and advices regarding antibiotic treatment. Those clients
allow the users to update or modify the information contained by the TREAT information
system.

DBMS Client

The DBMS Client component is the front end of the system. It is the core part of the
presentation layer. The DBMS Client provides all the functionality of the system to other
components of the presentation layer, in a very simplified way. It hides all the protocol and
connectivity to the DBMS Server from the other presentation layer components. The DBMS
Client connects to the DBMS Server via the CORBA interface.

Web Gateway

This component is an example of building a component that uses the DBMS Client core
component functionality. The web gateway is a component that provides functionality for web
server scripting languages (used for building dynamic web pages). It simplifies the functionality
of the DBMS Client, and provides a full string based functionally for all the features of the
system. The string based functionality is a necessity for a web server scripting language.
Those scripting languages have limited or no support for non-string connectivity, and are best
for manipulating and displaying strings. The web gateway calls methods from the DBMS
client component.

‘Web Server

The web server provides access to the TREAT system via a web browser client. The web server
handles all communication to the TREAT system and formats the information as HTML pages.
The web pages generated are the user interface of the system. The web pages are generated
dynamically, as a reply to a client browser request, and sent back to the web browser as HI'ML.
The connectivity with the browser is done via secured HTTPS connectivity. The web server
can serve multiple web browsers clients in parallel. The scripting language used on the web
server is using methods from the web gateway component. The user interface (the dynamic
web pages generated on the web server) in this project are just a demo, demonstrating the
capability of the system. A proper user interface should be analysed and deployed in the
future.

‘Web Browser

The web browsers are the actual windows to the TREAT system on the client side. The web
browser is displaying the user interface generated on the web server, and the user manipulates

50 Components Identification

the information through the browser. The information is passed back and forth from the web
server via a secured connection - HTTPS.

7.2.4 Search

The operation of searching and locating the right episode is a separate task. As search methods
might be changed in the future, due to TREAT database information structure changes. It
is separated and encapsulated so changes in the search engine can always be applied, with
a guaranty that nothing else in the system will break. When one has the episode unique
identifier in hand - an episode can be loaded and manipulated using the rest of the system.

Search Server

The search server. Performs the search on the database according to the search criteria
pass from the search client. The search server is implemented as a CORBA server and is a
multithreaded system.

Search Client

The search client. This client is optimised for web server scripting language. It provides string
only method for specifying search criteria, and for retrieving search results. The search client
is connecting to the search server via the CORBA interface.

7.3 External Components

The following components are used for accessing existing hospital systems. It should be taken
into consideration that those systems would provide different ways of access, and different
types of information, in different hospitals. It is extremely important that those components
will be external to the core of the TREAT system, in order to maintain a stable and uniform
core of the TREAT system.

As a general rule, every component in the system that is likely to change has been taken out
of the core TREAT system. This will provide total encapsulation and context free system,
and thus ensure the stability and easy maintenance.

All of those external components serves the purpose of obtaining information from other
information systems. Some of those systems can actually be removed and their functionality
can be replaced by the TREAT information system.

The external systems in Aalborg hospital are old, and with different and non-trivial ways to
access the information. The way to connect to each one of them and the information provided
by them is not fully known. New versions of those old systems are likely to be integrated in
the hospital environment soon, so those components, the way to connect to them, and the
information they provide may differ and will probably change in the near future.

7.3 External Components 51

7.3.1 ADBakt

ADBakt is the existing information system in the department of clinical microbiology. Used for
entering initial bacteria identification and final sepsis and susceptibility to antibiotics. Values
from A DBakt should be ported periodically or via a user initiation into the TREAT database.
The current mean of communication with ADBakt is via a text file dump (see section 2.2.4 on
page 9 for details about ADBakt. A working solution for extracting information from ADBakt
with an intermediary database has been built by Frydensberg et al. (2000a).

7.3.2 LABKA

LABKA is the existing information system in the department of clinical chemistry. Infor-
mation about dysfunctional organs and blood attributes are fed automatically by the blood
analysis system into LABKA. Currently there is no external connection to LABKA, but an
SQL link is under development. Values from LABKA should be ported periodically or via user
initiation into the TREAT database (see section 2.2.5 on page 9 for more about LABKA).

7.3.3 AS-400

The AS-400 system contains the hospitals patient information like name, admission dates,
previous background (allergy, usual practitioner etc). Connectivity to this system is currently
not available. If available, this component should copy values from the AS-400 into the TREAT
database. Another possible use of a component with connectivity to the AS-400 system is to
validate information already present in TREAT database. Currently there is a 4 weeks latency
for updating patient information (see section 2.2.6 on page 10).

7.3.4 CPR-Register

The CPR-register is an external system with all the inhabitants of Denmark. This system
can be used for checking whether the patient is still alive 30 days after being treated. The
information is currently received via a CD-ROM. An independent process should take the
information on the CD-ROM and update the TREAT database episodes (see section 2.2.7 on
page 10).

Chapter 8

Limitations

Previous to this chapter an overview of TREAT and the existing components has been de-
scribed. Due to limited resources (2 students doing a 4-month project) it has been chosen to
apply certain limitation to the project, in order to end up with a working solution which can
be integrated into a future TREAT information system. It has been chosen to sketch out the
design of all involved components, but to implement and focus only the core of the TREAT
system, the parts that are context free and are less likely to change. The TREAT solution in
this report is the web-client-server-database solution (see figure 7.1 on page 47).

8.1 Non Implemented Components

The parts that will not be implemented at all are those which are likely to differ from hospital
to hospital, i.e. connectivity to external unique hospital systems. In Aalborg hospital these
refer to:

LABKA The hospital database system used in the clinical chemistry department (see sec-
tion 2.2.5 on page 9). No connectivity is currently available to LABKA. During the
summer of 2001 the system is going to be ported to an SQL database, to which connec-
tivity will be possible.

ADBakt The system is used in the clinical microbiology department (see section 2.2.4 on
page 9). Connectivity is available via a text dump file. Frydensberg et al. (2000a) has
made a connective component with an intermediary database.

CPR-Register The system is used to gain information whether a patient is still alive 30
days after the treatment is over (see section 2.2.7 on page 10). Information is given on
a CD-ROM with all the inhabitants of Denmark.

Patient Data (AS-400) The hospital system that has all the patient information such as

name and other background information (see section 2.2.6 on page 10). Currently there
is no connectivity to this system.

53

54 Limitations

8.2 Fully Implemented Components

The full implementation is done for the core TREAT system - the DBMS Server, the DBMS
Client and the Web Gateway.

8.3 Proof of Concept Components

Proof of concept is made for components that are less likely to change - i.e. the DSS module
and the web user interface. The real DSS Module can be made, and replace the stub. An
example of a user interface has been made. After analysing the proper user interface needed
for a TREAT system (a task suited to be a master project of it’s own), the techniques used
in the provided user interface can be used by a future designer to create a better suited user
interface. The user interface and the DSS module supplied with this report is a proof of
concept and a way to illustrate all the possible features the TREAT system gives.

Chapter 9

Applied Technologies

Data
Presentation
HTTPS/HTML HTTPS
Sl R e
HTML]
Web Server ~ faeaaaiaaaaiaaiaaan :
...... ASP g
Java T .
Web Gateway Methods
:- ------ Java e E
Loeonnn DBMS Client
CORBA/XML CORBA

Java (e

DBMS Server

JDBC

SQL Server

TREAT
Database

Figure 9.1: Applied technologies.

The technologies used in the TREAT information system will be elaborated in this chapter.
A brief overview of the technologies used for exchanging information between the web browser

55

56 Applied Technologies

and the TREAT database will be presented. See figure 9.1 on the preceding page for the full
path from the bottom of the Content Layer to the top of the Presentation Layer. This chapter
will also provide a more in-depth description of the used technologies.

e The information of an episode is stored in TREAT database. This database is Microsoft
SQL Server 2000 (see section 9.7 on page 65).

e All interaction between the TREAT database and the DBMS Server are handled by a
JDBC driver (see section 9.2 on the facing page).

e The information held by the database is transformed into an XML document (see sec-
tion 9.4 on page 59) by using DOM (Domain Object Model, see section 9.4.3 on page 63).
DOM is a tree like structure consisting of nodes and links between them. New elements
(of information) can be added to the DOM tree.

e The DBMS Server can build a DOM based on information obtained from the database,
and convert the DOM into a XML document.

e The XML document is serialised into a string, and transferred to the client via CORBA.
The CORBA system provides interoperability between machines in a distributed envi-
ronment (see section 9.3 on page 58).

e The DBMS client receives the XML string, and it is converted back into a DOM tree.
The DBMS Client provides methods for interaction with the information contained in
the DOM.

e The methods provided by the DBMS Client enables the WebGateway to access and
modify the information.

e The WebGateway is used by various ASP scripts that run on the Web server (see sec-
tion 9.9 on page 67 and section 9.8 on page 66).

o The ASP scripts generates HTML pages based on information obtained by invoking
methods on the WebGateway class.

e The HTML pages generated by the ASP scripts are sent to the web browser via HTTPS.

e The information from the TREAT database is presented on the web browser.

9.1 Java

Java is a programming language developed by Sun Microsystems (www.java.sun.com 2001).
It is a high-level language that is simple to use, object oriented, and multithreaded. Java is
able to operate on numerous types platforms such as Windows, Linux, Unix, and MacOS.
Because of this feature all software written in this language has the be run-time interpreted
by a platform dependent Java Virtual Machine (JVM).

The source can be compiled into binary files (this compilation is called bytecode compilation)
on any platform that has a Java compiler. This byte code can be run on any implementation
of the JVM and on Windows, Unix, or Linux (see figure 9.2 on the facing page).

9.2 JDBC 57

Hel | o
Wor | d!

Uni x

HelTo.] ava Hel T 0. cl asq

Conpi |l ation
Sour ce code Byt ecode

nterpretation

Figure 9.2: The architecture of Java.

The Java Compilers and the JVM’s can obtained for free at Sun Microsystems web-site.
Several components for network and database connectivity are also available for this language.

9.1.1 Evaluation

The language is object oriented so encapsulation and separate components are fully suppoted
by the language. Java can run on several platforms without recompilation and only requiring
a JVM for the platform. Both of these properties makes Java ideal for the system proposed
in this report.

9.2 JDBC

JDBC stands for Java DataBase Connectivity. It is developed by Sun Microsystems to allow
Java programs easy access to information contained by any database. The JDBC enables
Java applications to use all standard SQL methods and calls. JDBC provides a unified way
of accessing databases.

The JDBC is a set of database access middle-ware drivers with interfaces specified by Sun
Microsystems. These drivers provides a high abstraction level of the database access process
for the programmer. JDBC provides the programmer with an easy to use, unified interface
for database access. (java.sun.com/products/jdk/1.2/docs/guide/jdbc 2001)

58 Applied Technologies

9.2.1 Evaluation

The JDBC is a unified interface to database access with very little dependency of the type or
brand of database used. This technolgy enables the system to connect to any database just
by changing the JDBC driver.

9.3 CORBA

CORBA stands for Common Object Request Broker Architecture. CORBA is a tool that pro-
vides interoperability between different systems, in a heterogeneous, distributed environment,
and in a way transparent to the programmer. The CORBA specification is defined by Object
Management Group (OMG).(www.omg.org 2001) CORBA allows applications to communi-
cate with each other independent of where they are located, what platform they are running
on, or language they where programmed with.

DBMSClient DBMSServer
- obj | operation() Object
Client
ref (servant)
IDL ORB IDL
Stub Interface Skeleton

Figure 9.3: The CORBA ORB architecture.

CORBA automates many common programming tasks such as error handling, registration,
dispatching, activation of objects and parameter marshalling®.

The CORBA architecture consists of several components as shown in figure 9.3 and described
below.

!The task of packing one or more items of data into a buffer, prior to transmitting that buffer over a
communication channel - i.e. the network

9.4 XML 59

Object The object is also called the servant. This object provides the functionality of the
CORBA Server (i.e. the DBMS Server is an Object). A specific method on an object
is invoked by the ORB when a client invokes that specific method. The object’s service
has to be registered using a naming service of the ORB.

Object Request Broker (ORB) The ORB provides a mechanism transparently relaying
client requests to the target object (the server). The ORB simplifies distributed pro-
gramming by making client request appear to be a local method call. When a client
invokes an operation, the ORB is responsible for finding the object, activating it if neces-
sary, delivering the request to the object, and returning any response to the client. The
ORB is the middle-ware that establishes the client-server relationships between objects
and client. A name service is part of the ORB. It provides a central registration area
where objects can register their service. The ORB uses the name service to find the
object when a client is asking for a service.

ORB Interface This interface provides useful methods for both the client and object (the
server). This interface is the same for all implementations.

IDL Skeleton & Stub The Interface Definition Language (IDL) skeleton and stub are
connecting the client and the object to the ORB (an example of an IDL file can be seen
in appendix B on page 153). The IDL definitions are actually the object interface. The
IDL file is compiled by an IDL compiler.

Client This is an application that invokes an operation on an Object. When a client is
looking for a specific object all it has to do is contact the name service of the ORB and
be forwarded to the machine on which the service resides. Accessing the method of a
remote object is transparent to the client application. It is as simple as calling a method
on a local object.

VisiBroker from VISIGENIC (www.visibroker.com 2001) and Orbix from Iona (www.orbix.com
2001) are two commercial, reliable, and fully compliant implementations of CORBA. JacORB
(jacorb.inf.fu berlin.de 2001) and TAO (www.theaceorb.com 2001) are two open source im-
plementations.

9.3.1 Evaluation

CORBA is an optimal solution for a communication between the clients and the servers in
our system. It allows the software to be programmed in different languages and the software
to reside on different platforms and machines with no concerns on the connectivity.

9.4 XML

This section will give an introduction to the XML language. XML stands for FXtensible
Mark-up Language. It is a mark-up language like HTML, but XML was designed to store and
exchange data and not designed to display data like HTML. XML is stored as plain text, and

60 Applied Technologies

provides a independent way of sharing data between software and hardware. XML is a W3C
standard (7). This standard is supported by many of the software industry market leaders
such as IBM, Sun Microsystems, and Microsoft.

9.4.1 Structure of the Language

The XML identifies data using a set of tags, i.e. identifiers enclosed in angle brackets, like
<..> and </...>, the data is held between the two tags. These tags are known as mark-up-
tags. The XML document is a hierarchical structure, each set of tags can either contain a
piece of data, on or more sets of tags, or nothing (empty element) as shown below. A set of
tags and their content is called an element.

<name>Hans</name>
<name><forename>Hans</forename><lastname>Jensen</lastname></name>
<name></name>

The very first line in the XML document is called the XML declaration. It defines the XML
version of the document and the character encoding used in this document. An example of
such a declaration for a XML document conforming to the 1.0 specification of XML and using
a european (Latinl) character encoding is shown below.

<?xml version="1.0" encoding="IS0-8859-1"7>

A XML document has a single root element, in the example below the root element is the
encodingTables tag. This XML describes parts of the coding table for Antibiotic.

<?xml version="1.0" encoding="IS0-8859-1"7>
<encodingTables>
<table name="ktAntibiotic">
<value index="0" info="AMP">Ampicillin</value>
<value index="1" info="AZT">Aztreonam</value>
<value index="2" info="CTX">Cefotaxim</value>
<value index="3" info="CFZ">Ceftazidim</value>
</field>
</encodingTables>

The coding table information is hierarchically structured as shown in figure 9.4 on the next
page.

An element inside a XML document can have attributes. Attributes provide information that
is not a part of the data, but otherwise important. Attributes can only defined in <...> tag,
and is placed after the name of the tag, a tag can contain several attributes. The syntax of
an attribute is attribute="value”, as shown below

9.4 XML 61

<table name="ktAntibiotic'">

The attributes in the coding table for Antibiotic shown above are primary used for two things:
The attributes contains the indez as the encoding number and the info as the description (i.e.
longer description) of the value.

attribute
i ndex="0"

el enent attribute
val ue i nf o=" AMP"

dat a
"Ampicillin”

attribute
i ndex="1"

el enent attribute
val ue i nf o=" AZT"

data
" Azt reonant

root el enment el ement attribute
possi bl eval ues field name="kt Anti bi otic"

attribute
i ndex="2"

el ement attribute
val ue i nf o="CTX"

data
" Cef ot axi nt'

attribute
i ndex="3"

el enent attribute
val ue i nf o="CFZ"

dat a
" Cef t azi di nt

Figure 9.4: The hierarchical structure of the XML document for the An-
tibiotic coding table.

Document Type Definition

The Document Type Definition (DTD) specification can be a part of the XML document, but
it is not a necessity. DTD specifies the kinds of elements that can be included in the XML
document, and the valid arrangements of those elements. It can be used to verify that a
XML document doesn’t contains any invalid XML structures or attributes. The DTD for the
Antibiotic example shown above is:

<!DOCTYPE encodingTables [
<!ELEMENT encodingTables (tablex)>

62 Applied Technologies

<!ELEMENT table (value*)>
<!ATTLIST table name CDATA #REQUIRED>
<VELEMENT value (#PCDATA)>
<VATTLIST value index CDATA #REQUIRED>
<VATTLIST value info CDATA "">
1>

IDOCTYPE This tag defines XML document type. In the above case the type is encodingTables.

'ELEMENT Defines an element, the context of an element is defined between the parentheses.
The first element encountered in the DTD is always the root element. The context of
an element can be of the following types:

(#PCDATA) Only Character data (strings).

(ANY) Any contents.

(child-elementl,child-element2,...) A sequence of children.

(child-element) A single occurrence of the an element.

(child-element+) Minimum one occurrence of an element.

(child-element*) Zero or more occurrences of an element.

(child-element?) Zero or one occurrence of an element.
(child-elementl|child-element2) Either one of the elements.

The second line in the above example specifies the root element as being encodingTa-

bles, the (table*) of the element defines that the root element contains zero or more
occurrences of the table element (specified in line 3).

YATTLIST This tag defines an attribute for an element. Line 4 in the DTD example shown
above defines a attribute called name for the table element. The CDATA states that the
value held in the attribute is character data, and #REQUIRED states that the attribute
must be included in the element.

9.4.2 XML Evaluation

XML data is stored in plain text format, this provides a independent way of sharing data
between different platforms. The plain text format in XML document also enables an easy
way of debugging and viewing the communication between the components, since then in can
be edited by a standard text editor.

Several XML parsers are available for languages such as Java, C++4, Perl, and VBA.

9.4.3 XML Parsers

Java has two major XML document parsing interfaces:

9.4 XML 63

Simple API for XML (SAX)

The Simple API of XML (SAX) is a very simple event based parser. It generates events for the
beginning and ending of elements and sends these events to the application through call-backs.
The application must implement methods to handles these events in almost the same manner
as handling events from a user interface. SAX can be obtained at (www.megginson.com/SAX/
2001)

An event-based interface will break the structure of XML document describing parts of the
coding table for the Antibiotic example (see section 9.4.1 on page 60) down into a series of
linear events:

start document

start element: encodingTables
start element: table
attribute: name="ktAntibiotic"
start element: value
attribute: index="0"
attribute: info="AMP"
characters: Ampicillin

end element: value

start element: value
attribute: index="3"
attribute: info="CFZzZ"
characters: Ceftazidim

end element: value

end element: table

end element: encodingTables
end document

The SAX is a resource friendly parser since it doesn’t keep a model of the XML document
in memory while parsing it. The processing of the structure and the information within the
XML document is only handled by the application. It’s very easy to obtain a specific piece of
information from the XML document due to the event based nature of the SAX parser. Since
no model of the XML is kept, it is impossible to manipulate the information or structure of
the XML document, thus SAX can only be used for read only operations on XML documents.

Document Object Model

The Document Object Model (DOM) is a W3C specification for application program interfaces
(API) for accessing the content of an XML document. The IBM & Apache implementation
of DOM can be obtained at (http://xml.apache.org/xerces j 2001).

The Document Object Model is a hierarchical tree of nodes arranged in the same manner as

64 Applied Technologies

XM Par ser
N DOM
Appl i cati on

XML

Docunent
XML Serializer

Figure 9.5: DOM overview.

depicted in figure 9.6. The DOM parser is requiring more (memory) resources than the SAX
parser since it represents the entire XML document as tree of nodes.

XM. Docunent DOM bj ect Tree
<?xnml_version="1.0" ?> r oot el enent
Kpossi bl eVal ues> possi bl eval ues
- I_ el ement
<fiel d> field
val ue>Anpi ci I 11 n<val | el ement | dat a
{(alue ¢ a uei|> val ue "Ampicillin”
fval ue>Azt r eonanxval ue>| | element L | data
val ue Azt r eonani
fval ue>Cef ot axi nxval ue>| | element] | data
val ue Cef ot axi nf
fval ue>Cef t azi di meval ueh | element | | data
val ue Cef t azi di nf

</ field>
K/ possi bl eVal ues>

Figure 9.6: The hierarchical structure of a DOM object tree.

The biggest benefit of DOM is that the application can modify the structure and information
held within the tree representing the XML document. The application interacts the this tree
by traversing the nodes and their children. The tree of nodes can easily be turned back into
an XML document after the application has modified it. It is done with the aid of a class
called XMLSerializer.

XML Parser Evaluation

Both the SAX and DOM parsers have the same error handling methods. The SAX parser
is more resource friendly than DOM, since it doesn’t build a tree like structure of the XML
document. SAX cannot be used for modifying the information or structure within the XML
document. The DOM parser has the ability to modify the information and structure of the
XML document since it builds a tree like structure of the XML document.

9.5 HTML 65

The system described in this report must have the ability modify the information transmitted
between various components. This requirement make the use a DOM parser ideal throughout
the system.

9.5 HTML

HTML is the standard for publishing hypertext (a way to read and navigate text and visual
information in a non-linear way) on the World Wide Web. It is a mark-up language that
tells the web browser how to display the loaded information. It is a non-proprietary format
processed by a wide range of tools. By using HTML, it is assured that:

e No special components are needed on the web clients, since all commonly used web
browsers support HTML as basic functionality (Internet Explorer and Netscape).

e Almost no maintenance is needed on the client (except installing the browser - if not
already a part of the operating system).

e Changes in the user interface are applied in one place. When new version of TREAT is
used - there is no change of the clients.

e Using HTML will enforce a separation of the presentation layer from the logic layer.
HTML is purely a presentation language, and have none or very limited functionality in
it.

e Most commonly used web browser can show the source of the HTML page that is
currently shown on the screen. This enables easy debugging of the HTML page.

For more information about HTML visit www.w3c.org (2001) and www.w3schools.com (2001).

9.6 HTTPS

9.7 SQL Server 2000

The Microsoft SQL Server 2000 is a member of the top tier of commercial database products.
SQL Server is a relational database with high performance, scalability, and reliability. The
SQL Server 2000 has commercial JDBC' drivers from numerous vendors. For more infor-
mation about SQL Server from Microsoft see www.microsoft.com/sql (2001). The TREAT
system presented in this report is using the basic features of the SQL Server via the JDBC
connectivity.

9.7.1 Constrains

One of the goals of this project is to build a system that will be used in the future. Judez
DataSystems is going to further maintain and develop this project. Complying with existing

66 Applied Technologies

technologies that are already used by Judex will ensure easy adaptation when Judezx Data-
Systems is taking over. Judex has decided that their future solution will use Microsoft SQL
Server. Due to that, and since it doesn’t really matter what database server is used in this
project as long as it has JDBC connectivity, it has been decided to use SQL Server.

9.8 Web Server IIS 5.0

The web server used in this TREAT solution is Microsoft Internet Information Server version
5.0 (IIS). 1IS 5.0 supports the latest Internet standards. Its features include reliability, scala-
bility, performance and security. IIS is fully integrated into Windows 2000 operating system.
For more details see www.microsoft.com/windows2000/technologies/web (2001).

An important feature needed from the web server is to be able to maintain a session. In web
terminology, a session is when a user enters a site, and some sort of cookie or registration
mechanism is registering the browser. The session continues until the user leaves the site.
The web server can uniquely identify the client through the entire session via the cookie.
The cookie is a small slip of information, uniquely identifying the client, kept on the client
machine, and transferred with every client request to the server. Using this slip of information,
the server knows the entire session context that belongs to the client. The ability to maintain a
session is obviously needed in TREAT - the server has to be able to know what was previously
transmitted to each of the clients and differentiate between the clients.

The web server is generating HTML web pages dynamically. A script is executed on the server
side every time a client is asking for a web page. According to the client session cookie, the
web server can uniquely identify the client, and bring up variables, information and values
kept for this specific client session. According to those values, and the client specific request,
the scripting language will generate dynamically a web page and transmit it to the client.

Since all the components of the system are written in Java, the web server should provide
a way to connect to a Java class and interact with it. The web server should be able to
maintain the instance of the Java class for each of it’s current clients that are within a session.
The appropriate Java class instance that belongs to the requesting client should be loaded
for each of its requests. The instance should be created when the session starts, and be
dismissed only when the session ends. By having such a feature, the possibilities of dynamically
generating web pages are almost unlimited. It enables the web server to support almost all
Java functionality. The web server Java class in TREAT is the WebGateway component
described in section 7.2.3 on page 49.

9.8.1 Constrains

As with the SQL server, using IIS 5.0 is mainly a decision that was made due to the fact that
Judezx is going to maintain and support the TREAT system presented in this report. Judex
are going to use Windows 2000 (since they are Microsoft solution providers). IIS 5.00 is an
integrated part of Windows 2000, so it is the most obvious decision of what web server to
use. IIS 5.0 also supports sessions and connectivity to Java class. Theoretically, it is possible
to use another web server product and install it on top of windows 2000. It is common logic

9.9 Active Server Pages 67

that other web servers will have the same session and Java connectivity as IIS 5.0. Since IIS
is the default provided web server with windows 2000, and since it supports the session and
Java class connection, IIS 5.0 was chosen as the web server solution. The IIS 5.0 that comes
with Windows 2000 Professional has a limit of 10 simultaneous connections to the web server.
Windows 2000 enterprise version supports unlimited connections to its IIS and should be the
operating system deployed in the future.

9.9 Active Server Pages

Active Server Pages (ASP) is a script language for Microsoft Internet Information Server.
ASP enables to create dynamic content by using server-side scripting and components to
create dynamic web pages. ASP has no specific orientations (as opposed to PHP for example,
which is a server scripting language oriented towards database queries). Since ASP comes
buildt in with IIS 5.00, it has been chosen to be the scripting language. It supports sessions
and allows connecting to external Java class(s), provided those classes have been previously
registered in the operating system as COM objects. Those Java-COM objects can be created
for each session, and the content of the instance can be maintained throughout the entire
session life cycle.

9.10 MD5 Algorithm

The MD5 algorithm was developed in 1994, it is a one-way hash algorithm that takes any
length of data and produces a 128 bit (32 hex numbers) “fingerprint”, called MD5 Sum. This
fingerprint is non-reversible, and it is computationally infeasible to produce two identical MD4
sums having the same data. MD5 is a commonly way to verify data integrity, and it is more
reliable than other commonly used methods, such as checksums. (Rivest 2001)

The MD5 algorithm can take any string, and create a unique Md5 Sum out of it. The MD§
sum and the algorithm has the following properties:

e It is impossible to generate the original values out of the MD5 sum.

e The same MD§ sum will always be generated for the same string.

o Different MD5 sum will always be generated for different strings.
The MD5 sum will be used for determine whether to perform an advice according to the
encounter values. A MD5 sum of the entire encounter information is stored with the generated
advice. If any information is added or modified in the encounter, the MD$ sum of the encounter

will differ from the MD5 sum stored with the previous advice results. A new advice will
therefore be generated.

Chapter 10

(GGeneral Design

This chapter describes the interaction between the different components and the protocol
used. Design Methods for keeping the information consistent, issues raised in chapter 6 on
page 37 regarding security and backup, and other special issues such as signing and statistical
analysis of the TREAT database information will also be presented. Few tasks (like security
and backup) have world known products that were built especially for performing those tasks.
The system described in this report is not trying to compete with existing products - it uses
them and completes them. The system design will try to use the functionality of those products
as much as possible.

10.1 Context Free Information

The XML information is the context free parts of the system. One of the reasons an XML
string is used is that no matter what changes are made in the database structure - the XML
passed between the components will always be a string. The content of the string - the XML
itself, will be different and will be analysed dynamically in runtime by the receiving side. The
actual interfaces between the components (i.e. the definition of the methods exported, the id!
file, see section 9.3 on page 58) is always the same - receiving and sending a string. The XML
DTD - see section 9.4.1 on page 61) also stays the same. The only changes are the information
and database structure inside the XML.

10.1.1 TREAT Database Structure

The framework proposed in this report is based on a hierarchical structuring of the information
held by the TREAT database. The entire episode information is held in the database in a
tree like structure. The structure is shown in figure 10.1 on the following page, and was
supplied by Judez. The database structure represents the problem domain in the real world.
Each episode (i.e. tEpisode table) is associated with one patient and has several encounters
(tNotifications). Each encounter has one advice result (tCalcResults) and several blood and
concurrent samples, and so on. The advice results structure for each encounter is shown in

69

